Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.646
Filter
1.
Trop Anim Health Prod ; 56(4): 132, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642253

ABSTRACT

The objectives of this study were to evaluate the influence of inbreeding on growth traits and body measurements, as well as on the estimation of genetic parameters and genetic trends in Guzerá cattle. Phenotypic records of 4,212 animals selected for postweaning weight from Guzerá Breeding Program of Advanced Beef Cattle Research Center were utilized. The pedigree file contained records from 7,213 animals born from 1928 to 2019. The traits analyzed were: birth weight (BW), weights adjusted to 210, 378 and 550 days of age (W210, W378 and W550, respectively), chest girth at 378 and 550 days of age (CG378 and CG550), scrotal circumference (SC), and hip height at 378 and 550 days of age (HH378 and H550). Linear regression was used to evaluate the effects of inbreeding on traits. Genetic parameters were obtained using models including or not the effect of inbreeding as a covariate. Inbreeding had negative effects (P ≤ 0.01) on BW (-0.09 kg), W378 (-2.86 kg), W550 (-2.95 kg), HH378 (-0.10 cm), and H550 (-0.29 cm). The lowest and highest heritability estimates were obtained for W210 (0.21 ± 0.07) and HH550 (0.57 ± 0.06), respectively. The genetic correlations were strong and positive between all traits, ranging from 0.44 ± 0.08 (SC x HH) to 0.99 ± 0.01 (W378 x W550). Spearman correlations between EBVs obtained with or without inbreeding effect ranged from 0.968 to 0.995 (P < 0.01). The results indicate loss of productive performance in inbred animals. However, the inclusion of inbreeding coefficient in genetic evaluation models did not alter the magnitude of genetic parameters or genetic trends for the traits studied.


Subject(s)
Inbreeding , Tropical Climate , Pregnancy , Female , Cattle/genetics , Animals , Phenotype , Parturition , Birth Weight
2.
Mol Ecol ; 33(9): e17346, 2024 May.
Article in English | MEDLINE | ID: mdl-38581173

ABSTRACT

Wildlife populations are becoming increasingly fragmented by anthropogenic development. Small and isolated populations often face an elevated risk of extinction, in part due to inbreeding depression. Here, we examine the genomic consequences of urbanization in a caracal (Caracal caracal) population that has become isolated in the Cape Peninsula region of the City of Cape Town, South Africa, and is thought to number ~50 individuals. We document low levels of migration into the population over the past ~75 years, with an estimated rate of 1.3 effective migrants per generation. As a consequence of this isolation and small population size, levels of inbreeding are elevated in the contemporary Cape Peninsula population (mean FROH = 0.20). Inbreeding primarily manifests as long runs of homozygosity >10 Mb, consistent with the effects of isolation due to the rapid recent growth of Cape Town. To explore how reduced migration and elevated inbreeding may impact future population dynamics, we parameterized an eco-evolutionary simulation model. We find that if migration rates do not change in the future, the population is expected to decline, though with a low projected risk of extinction. However, if migration rates decline or anthropogenic mortality rates increase, the potential risk of extinction is greatly elevated. To avert a population decline, we suggest that translocating migrants into the Cape Peninsula to initiate a genetic rescue may be warranted in the near future. Our analysis highlights the utility of genomic datasets coupled with computational simulation models for investigating the influence of gene flow on population viability.


Subject(s)
Gene Flow , Genetics, Population , Inbreeding , Population Dynamics , Animals , South Africa , Population Density , Urbanization , Animal Migration
3.
Proc Biol Sci ; 291(2020): 20232617, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38593844

ABSTRACT

When populations repeatedly adapt to similar environments they can evolve similar phenotypes based on shared genetic mechanisms (parallel evolution). The likelihood of parallel evolution is affected by demographic history, as it depends on the standing genetic variation of the source population. The three-spined stickleback (Gasterosteus aculeatus) repeatedly colonized and adapted to brackish and freshwater. Most parallel evolution studies in G. aculeatus were conducted at high latitudes, where freshwater populations maintain connectivity to the source marine populations. Here, we analysed southern and northern European marine and freshwater populations to test two hypotheses. First, that southern European freshwater populations (which currently lack connection to marine populations) lost genetic diversity due to bottlenecks and inbreeding compared to their northern counterparts. Second, that the degree of genetic parallelism is higher among northern than southern European freshwater populations, as the latter have been subjected to strong drift due to isolation. The results show that southern populations exhibit lower genetic diversity but a higher degree of genetic parallelism than northern populations. Hence, they confirm the hypothesis that southern populations have lost genetic diversity, but this loss probably happened after they had already adapted to freshwater conditions, explaining the high degree of genetic parallelism in the south.


Subject(s)
Fresh Water , Smegmamorpha , Animals , Smegmamorpha/genetics , Inbreeding , Genetic Variation
4.
Sci Rep ; 14(1): 9151, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644368

ABSTRACT

Limited commercial quality protein maize (QPM) varieties with low grain yield potential are currently grown in Eastern and Southern Africa (ESA). This study was conducted to (i) assess the performance of single-cross QPM hybrids that were developed from elite inbred lines using line-by-tester mating design and (ii) estimate the general (GCA) and specific (SCA) combining ability of the QPM inbred lines for grain yield, agronomic and protein quality traits. One hundred and six testcrosses and four checks were evaluated across six environments in ESA during 2015 and 2016. Significant variations (P ≤ 0.01) were observed among environments, genotypes and genotype by environment interaction (GEI) for most traits evaluated. Hybrids H80 and H104 were the highest-yielding, most desirable, and stable QPM hybrids. Combining ability analysis showed both additive and non-additive gene effects to be important in the inheritance of grain yield. Additive effects were more important for agronomic and protein quality traits. Inbred lines L19 and L20 depicted desirable GCA effects for grain yield. Various other inbred lines with favorable GCA effects for agronomic traits, endosperm modification, and protein quality traits were identified. These inbred lines could be utilized for breeding desirable QPM cultivars. The QPM hybrids identified in this study could be commercialized after on-farm verification to replace the low-yielding QPM hybrids grown in ESA.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/growth & development , Plant Breeding/methods , Africa, Southern , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Africa, Eastern , Genotype , Crosses, Genetic , Inbreeding , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Methods Mol Biol ; 2787: 169-181, 2024.
Article in English | MEDLINE | ID: mdl-38656489

ABSTRACT

Genetic maps are an excellent tool for the analysis of important traits, the development of which is the result of the combined expression of several genes, enabling the genomic localization of the factors determining them. Such features, characterized by a normal distribution of values, are referred to as quantitative or polygenic. The analysis of their genetic background using a chromosome map is called the mapping of quantitative traits loci (QTL). QTL analysis is a statistical method of determining the genetic association of phenotypic data (trait measurements) with genotypic data (DNA markers assigned to linkage groups).There are numerous tools developed for QTL mapping. This chapter introduces Windows QTL Cartographer with Composite Interval Mapping (CIM) method, which estimates the QTL position by combining interval mapping with multiple regression. The genotypic and phenotypic data used in the exemplary QTL mapping procedure were obtained for the recombinant inbred line (RIL) population of rye. Plant height, assessed in three seasons, was the exemplary trait under study.


Subject(s)
Chromosome Mapping , Phenotype , Quantitative Trait Loci , Chromosome Mapping/methods , Genotype , Genetic Linkage , Software , Inbreeding , Chromosomes, Plant/genetics
6.
Trop Anim Health Prod ; 56(2): 92, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430430

ABSTRACT

This study aimed to identify and characterize runs of homozygosis (ROHs), genes involved in production characteristics and adaptation to tropical systems and to estimate the inbreeding coefficient of Curraleiro Pé-Duro (CPD) and Pantaneiro (PANT), two brazilian locally adapted cattle breeds. The results demonstrated that 79.25% and 54.29% of ROH segments were bigger than 8 Mb in CPD and PANT, respectively, indicating recent inbred matings in the studied population. Six homozygosis islands were identified simultaneously in both breeds, where 175 QTLs and 1072 genes previously described as associated with production traits are located. The inbreeding coefficient (FROH) estimated based on ROHs (FROH) showed that inbreeding is low (2 to 4%), which is different from expected for small populations such as locally adapted ones.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Cattle/genetics , Animals , Homozygote , Phenotype , Reproduction
7.
Trop Anim Health Prod ; 56(2): 102, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478192

ABSTRACT

Bawri or Garri, a non-descript cattle population managed under an extensive system in Madhya Pradesh state of India, was identified and characterized both genetically and phenotypically to check whether or not it can be recognised as a breed. The cattle have white and gray colour and are medium sized with 122.5 ± 7.5 cm and 109.45 ± 0.39 cm height at withers in male and female, respectively. Double-digest restriction site associated DNA (ddRAD) sequencing was employed to identify ascertainment bias free SNPs representing the entire genome cost effectively; resulting in calling 1,156,650 high quality SNPs. Observed homozygosity was 0.76, indicating Bawri as a quite unique population. However, the inbreeding coefficient was 0.025, indicating lack of selection. SNPs found here can be used in GWAS and genetic evaluation programs. Considering the uniqueness of Bawri cattle, it can be registered as a breed for its better genetic management.


Subject(s)
Genome , Inbreeding , Cattle/genetics , Female , Male , Animals , DNA , India , Polymorphism, Single Nucleotide
8.
Proc Biol Sci ; 291(2018): 20232467, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38444336

ABSTRACT

Despite the potential for mechanical, developmental and/or chemical mechanisms to prevent self-fertilization, incidental self-fertilization is inevitable in many predominantly outcrossing species. In such cases, inbreeding can compromise individual fitness. Unquestionably, much of this inbreeding depression is maladaptive. However, we show that when reproductive compensation allows for the replacement of inviable embryos lost early in development, selection can favour deleterious recessive variants that induce 'self-sacrificial' death of inbred embryos. Our theoretical results provide numerous testable predictions which could challenge the assumption that inbreeding depression is always maladaptive. Our work is applicable any species that cannot fully avoid inbreeding, exhibits substantial inbreeding depression, and has the potential to compensate embryos lost early in development. In addition to its general applicability, our theory suggests that self-sacrificial variants might be responsible for the remarkably low realized selfing rates of gymnosperms with high primary selfing rates, as gymnosperms exhibit strong inbreeding depression, have effective reproductive compensation mechanisms, and cannot evolve chemical self-incompatibility.


Subject(s)
Inbreeding Depression , Inbreeding , Self-Fertilization , Cycadopsida , Reproduction
9.
Sci Rep ; 14(1): 7455, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38548817

ABSTRACT

Inbred strains of organisms are genetically highly uniform and thus useful for life science research. We have previously reported the ongoing generation of the zebrafish IM strain from the India (IND) strain through full sib-pair mating for 16 generations. However, the IM fish laid a small number of offspring and had a short lifespan, implying the need for discreet care in breeding. Here, we report the subsequent establishment of IM strain as well as the generation of a new inbred zebrafish strain, Mishima-AB (M-AB). M-AB was derived from the *AB strain by full sib-pair mating for over 20 generations, which fulfills the general criterion for the establishment of an inbred strain. In contrast to the IM case, maintenance of the M-AB strain by sib-pair mating required almost no special handling. Genome sequencing of IM individuals from the 47th generation and M-AB individuals from the 27th generation revealed that SNP-based genomic heterogeneity across whole-genome nucleotides was 0.008% and 0.011%, respectively. These percentages were much lower than those of the parental IND (0.197%) and *AB (0.086%) strains. These results indicate that the genomes of these inbred strains were highly homogenous. We also demonstrated the successful microinjection of antisense morpholinos, CRISPR/Cas9, and foreign genes into M-AB embryos at the 1-cell stage. Overall, we report the establishment of a zebrafish inbred strain, M-AB, which is capable of regular breeding and genetic manipulation. This strain will be useful for the analysis of genetically susceptible phenotypes such as behaviors, microbiome features and drug susceptibility.


Subject(s)
Inbreeding , Zebrafish , Animals , Zebrafish/genetics , Genome , Chromosome Mapping , Phenotype
10.
Genes (Basel) ; 15(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38540373

ABSTRACT

Runs of Homozygosity (ROH) are continuous homozygous DNA segments in diploid genomes, which have been used to estimate the genetic diversity, inbreeding levels, and genes associated with specific traits in livestock. In this study, we analyzed the resequencing data from 10 local goat breeds in Yunnan province of China and five additional goat populations obtained from a public database. The ROH analysis revealed 21,029 ROH segments across the 15 populations, with an average length of 1.27 Mb, a pattern of ROH, and the assessment of the inbreeding coefficient indicating genetic diversity and varying levels of inbreeding. iHS (integrated haplotype score) was used to analyze high-frequency Single-Nucleotide Polymorphisms (SNPs) in ROH regions, specific genes related to economic traits such as coat color and weight variation. These candidate genes include OCA2 (OCA2 melanosomal transmembrane protein) and MLPH (melanophilin) associated with coat color, EPHA6 (EPH receptor A6) involved in litter size, CDKAL1 (CDK5 regulatory subunit associated protein 1 like 1) and POMC (proopiomelanocortin) linked to weight variation and some putative genes associated with high-altitude adaptability and immune. This study uncovers genetic diversity and inbreeding levels within local goat breeds in Yunnan province, China. The identification of specific genes associated with economic traits and adaptability provides actionable insights for utilization and conservation efforts.


Subject(s)
Albinism, Oculocutaneous , Goats , Inbreeding , Animals , Goats/genetics , China , Homozygote
11.
Anim Biotechnol ; 35(1): 2329106, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38497403

ABSTRACT

This study analysed the genetic diversity and population structure of eight sheep breeds in Turkey and nearby countries. Moderate genetic diversity was observed, with the Sakiz (SKZ) exhibiting the highest diversity based on heterozygosity and allelic richness (AR) values. Genetic distances revealed differentiation between the populations, with the most significant divergence between the Cyprus Fat Tail (CFT) and SKZ breeds. PCA demonstrated SKZ and Chios (CHI) clustering together, indicating genetic similarity. Karakas (KRS), Norduz (NDZ), Afshari (AFS), Moghani (MOG) and others showed overlap, reflecting genetic relationships. Ancestry analysis found that KRS was predominantly inherited from the second ancestral population, while SKZ and NDZ were primarily derived from the first and second ancestral lineages. This illustrated the populations' diverse origins. Most genetic variation (96.84%) was within, not between, populations. The phi-statistic (PhiPT) indicated moderate differentiation overall. Phylogenetic analysis further demonstrated the genetic distinctiveness of the SKZ breed. ROH and FROH analyses showed that SKZ exhibited the highest homozygosity and inbreeding, while KRS displayed the lowest. This study elucidates these breeds' genetic diversity, structure and relationships. Key findings include moderate diversity, evidence of differentiation between breeds, diverse ancestral origins and distinct ROH patterns. This provides insights into the population's genetic characteristics and conservation requirements.


Subject(s)
Genetics, Population , Polymorphism, Single Nucleotide , Sheep/genetics , Animals , Phylogeny , Polymorphism, Single Nucleotide/genetics , Turkey , Inbreeding , Genetic Variation/genetics
12.
J Appl Genet ; 65(2): 383-394, 2024 May.
Article in English | MEDLINE | ID: mdl-38528244

ABSTRACT

Composite breeds, including Brangus, are widely utilized in subtropical and tropical regions to harness the advantages of both Bos t. taurus and Bos t. indicus breeds. The formation and subsequent selection of composite breeds may result in discernible signatures of selection and shifts in genomic population structure. The objectives of this study were to 1) assess genomic inbreeding, 2) identify signatures of selection, 3) assign functional roles to these signatures in a commercial Brangus herd, and 4) contrast signatures of selection between selected and non-selected cattle from the same year. A total of 4035 commercial Brangus cattle were genotyped using the GGP-F250K array. Runs of Homozygosity (ROH) were used to identify signatures of selection and calculate genomic inbreeding. Quantitative trait loci (QTL) enrichment analysis and literature search identified phenotypic traits linked to ROH islands. Genomic inbreeding averaged 5%, primarily stemming from ancestors five or more generations back. A total of nine ROH islands were identified, QTL enrichment analysis revealed traits related to growth, milk composition, carcass, reproductive, and meat quality traits. Notably, the ROH island on BTA14 encompasses the pleiomorphic adenoma (PLAG1) gene, which has been linked to growth, carcass, and reproductive traits. Moreover, ROH islands associated with milk yield and composition were more pronounced in selected replacement heifers of the population, underscoring the importance of milk traits in cow-calf production. In summary, our research sheds light on the changing genetic landscape of the Brangus breed due to selection pressures and reveals key genomic regions impacting production traits.


Subject(s)
Genomics , Inbreeding , Cattle/genetics , Animals , Female , Genotype , Homozygote , Quantitative Trait Loci , Polymorphism, Single Nucleotide
13.
Heredity (Edinb) ; 132(4): 211-220, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472424

ABSTRACT

Inbreeding can reduce offspring fitness and has substantial implications for the genetic diversity and long-term viability of populations. In social cooperative canids, inbreeding is conditioned by the geographic proximity between opposite-sex kin outside natal groups and the presence of related individuals in neighbouring groups. Consequently, challenges in moving into other regions where the species is present can also affect inbreeding rates. These can be particularly problematic in areas of high human density, where movement can be restricted, even for highly vagile species. In this study, we investigate the socio-ecological dynamics of Iberian wolf packs in the human-dominated landscape of Alto Minho, in northwest Portugal, where wolves exhibit a high prevalence of short-distance dispersal and limited gene flow with neighbouring regions. We hypothesise that mating occurs regardless of relatedness, resulting in recurrent inbreeding due to high kin encounter rates. Using data from a 10-year non-invasive genetic monitoring programme and a combination of relatedness estimates and genealogical reconstructions, we describe genetic diversity, mate choice, and dispersal strategies among Alto Minho packs. In contrast with expectations, our findings reveal relatedness-based mate choice, low kin encounter rates, and a reduced number of inbreeding events. We observed a high prevalence of philopatry, particularly among female breeders, with the most common breeding strategy involving the pairing of a philopatric female with an unrelated immigrant male. Overall, wolves were not inbred, and temporal changes in genetic diversity were not significant. Our findings are discussed, considering the demographic trend of wolves in Alto Minho and its human-dominated landscape.


Subject(s)
Inbreeding , Wolves , Humans , Animals , Male , Female , Wolves/genetics , Breeding , Reproduction/genetics , Gene Flow , Sexual Behavior, Animal
14.
Plant Biol (Stuttg) ; 26(3): 427-436, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38427439

ABSTRACT

Evaluation of plant translocation success based on fitness-related quantitative traits combined with molecular markers may contribute to a finer assessment of inbreeding, selective and rescue processes, which might have long-term consequences for population dynamics and viability. We investigated fitness traits (seed germination, seedling viability, and juvenile growth and mortality) combined with 15 microsatellite loci of the first post-translocation seed progeny from two translocated populations of Campanula glomerata, an insect-pollinated, self-incompatible perennial herb. We examined whether inbreeding, heterosis through admixture, translocation site and maternal transplant seed source origin and lineage might affect seed quality and juvenile growth in controlled cultivation conditions. Flower production and seed germination of the transplants was higher in one of the two translocation sites, which might be related to differences in soil and vegetation composition and cover. Strong maternal effects related to seed source origin and lineage were found on progeny size, with the largest transplants producing the largest progeny. The differences in rosette diameter were maintained across the whole growth period measured. There was inbreeding depression (rather than heterosis) related to biparental inbreeding at the early progeny growth stage, also expressed through juvenile mortality. Our findings highlight that maternal transplant origin, especially when seed sources consisted of small, fragmented remnants, might have a selective value on fitness in the post-translocation generations. If maternal effects and inbreeding depression persist, they might affect global genetic diversity patterns in the long term. Further admixture in the next generations might buffer maternal and inbreeding effects or lead to outbreeding depression.


Subject(s)
Campanulaceae , Inbreeding Depression , Maternal Inheritance , Inbreeding , Seeds/genetics , Campanulaceae/genetics
15.
BMC Ecol Evol ; 24(1): 29, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433185

ABSTRACT

The African buffalo, Syncerus caffer, is a key species in African ecosystems. Like other large herbivores, it plays a fundamental role in its habitat acting as an ecosystem engineer. Over the last few centuries, African buffalo populations have declined because of range contraction and demographic decline caused by direct or indirect human activities. In Mozambique, historically home to large buffalo herds, the combined effect of colonialism and subsequent civil wars has created a critical situation that urgently needs to be addressed. In this study, we focused on the analysis of genetic diversity of Syncerus caffer caffer populations from six areas of Mozambique. Using genome-wide SNPs obtained from ddRAD sequencing, we examined the population structure across the country, estimated gene flow between areas under conservation management, including national reserves, and assessed the inbreeding coefficients. Our results indicate that all studied populations of Syncerus caffer caffer are genetically depauperate, with a high level of inbreeding. Moreover, buffaloes in Mozambique present a significant population differentiation between southern and central areas. We found an unexpected genotype in the Gorongosa National Park, where buffaloes experienced a dramatic population size reduction, that shares a common ancestry with southern populations of Catuane and Namaacha. This could suggest the past occurrence of a connection between southern and central Mozambique and that the observed population structuring could reflect recent events of anthropogenic origin. All the populations analysed showed high levels of homozygosity, likely due to extensive inbreeding over the last few decades, which could have increased the frequency of recessive deleterious alleles. Improving the resilience of Syncerus caffer caffer in Mozambique is essential for preserving the ecosystem integrity. The most viable approach appears to be facilitating translocations and re-establishing connectivity between isolated herds. However, our results also highlight the importance of assessing intraspecific genetic diversity when considering interventions aimed at enhancing population viability such as selecting suitable source populations.


Subject(s)
Bison , Buffaloes , Humans , Animals , Buffaloes/genetics , Ecosystem , Inbreeding , Mozambique
16.
J Insect Sci ; 24(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38484108

ABSTRACT

Inbreeding can have detrimental effects on reproductive fitness, but the extent of lineage-specific variation in these effects remains poorly understood. This study investigated the effects of brother and sister inbreeding on reproductive fitness in 2 lineages (L1 and T) of T. tabaci. Inbred females from both lineages exhibited a significant reduction in longevity compared with the control group. The L1 lineage experienced a 27% and 43% decrease in longevity in the F2 and F3 generations, respectively, while the T lineage showed a similar trend with a 30% and 44% decrease. The T lineage consistently displayed slightly longer lifespans than the L1 lineage across all generations. Brother and sister inbreeding also led to a decrease in fecundity rates in both lineages. In the F3 generation, the number of eggs laid decreased by 59% compared with the F2 generation. The T lineage consistently exhibited slightly lower fecundity rates compared with the L1 lineage. Egg hatchability rates declined with subsequent inbreeding, with the F3 generation showing lower rates compared with the F2 generation. However, the T lineage did not exhibit a significant difference in inbreeding depression for egg hatchability rates, while the L1 lineage demonstrated a noticeable decrease. Deformities observed in male L1 lineage resulting from inbreeding were consistent with disruptions in normal developmental processes, affecting various body parts such as legs, antennae, and wings. Continued inbreeding increased susceptibility to inbreeding depression in terms of longevity, fecundity, and egg hatchability.


Subject(s)
Thysanoptera , Female , Male , Animals , Thysanoptera/genetics , Inbreeding , Ovum , Fertility , Genetic Fitness
17.
Mol Ecol ; 33(9): e17335, 2024 May.
Article in English | MEDLINE | ID: mdl-38549143

ABSTRACT

Inbreeding depression is of major concern in declining populations, but relatively little is known about its genetic architecture in wild populations, such as the degree to which it is composed of large or small effect loci and their distribution throughout the genome. Here, we combine fitness and genomic data from a wild population of red deer to investigate the genomic distribution of inbreeding effects. Based on the runs of homozygosity (ROH)-based inbreeding coefficient, FROH, we use chromosome-specific inbreeding coefficients (FROHChr) to explore whether the effect of inbreeding varies between chromosomes. Under the assumption that within an individual the probability of being identical-by-descent is equal across all chromosomes, we used a multi-membership model to estimate the deviation of FROHChr from the average inbreeding effect. This novel approach ensures effect sizes are not overestimated whilst maximising the power of our available dataset of >3000 individuals genotyped on >35,000 autosomal SNPs. We find that most chromosomes confer a minor reduction in fitness-related traits, which when these effects are summed, results in the observed inbreeding depression in birth weight, survival and lifetime breeding success. However, no chromosomes had a significant detrimental effect compared to the overall effect of inbreeding, indicating no major effect loci. We conclude that in this population, inbreeding depression is likely the result of multiple mildly or moderately deleterious mutations spread across all chromosomes, which are difficult to detect with statistical confidence. Such mutations will be inefficiently purged, which may explain the persistence of inbreeding depression in this population.


Subject(s)
Deer , Genetic Fitness , Genetics, Population , Inbreeding Depression , Polymorphism, Single Nucleotide , Animals , Deer/genetics , Inbreeding Depression/genetics , Polymorphism, Single Nucleotide/genetics , Models, Genetic , Inbreeding , Homozygote , Genotype , Male , Female
18.
Res Vet Sci ; 171: 105230, 2024 May.
Article in English | MEDLINE | ID: mdl-38492280

ABSTRACT

Congenital malformations can affect almost 7% of canine newborns. The increase of commercial dog breeding and inbreeding used to maintain the striking characteristics of each breed, the appearance of malformations has become increasingly common, especially in brachycephalic dogs. The causes are diverse, and include genetic, nutritional, iatrogenic, and infectious factors, often making it difficult to establish a cause-consequence relationship. The high mortality associated with malformations comes not only from the fact that some are incompatible with life, but also because even if many undergo surgical treatment or correction, they require specific management, monitoring, and clinical treatment for an indefinite period of time. The most common malformations such as cleft lip and palate, hydrocephalus and anasarca have been studied for a long time, and it is currently known that brachycephalic dogs have a greater predisposition, however, for other less common conditions as gastroschisis and hypospadias, there is only a few case reports. The appearance of congenital defects in a litter leads to financial losses for the breeder, emotional losses for the owner and the veterinarian and harms the well-being of that individual. For this reason, the aim of this review article is to gather relevant information on the characteristics, diagnosis, and management of the main malformations in puppies. It is essential that the veterinarian is prepared to diagnose and treat these conditions, reducing negative impacts on animals and owners.


Subject(s)
Cleft Lip , Cleft Palate , Craniosynostoses , Dog Diseases , Male , Dogs , Animals , Cleft Lip/veterinary , Cleft Palate/veterinary , Inbreeding , Craniosynostoses/veterinary , Dog Diseases/diagnosis , Dog Diseases/therapy
19.
PLoS One ; 19(3): e0299109, 2024.
Article in English | MEDLINE | ID: mdl-38442089

ABSTRACT

Population structure and genetic diversity are the key parameters to study the breeding history of animals. This research aimed to provide a characterization of the population structure and to compare the effective population size (Ne), LD decay, genetic diversity, and genomic inbreeding in Iranian native Caspian (n = 38), Turkmen (n = 24) and Kurdish (n = 29) breeds and some other exotic horses consisting of Arabian (n = 24), Fell pony (n = 21) and Akhal-Teke (n = 20). A variety of statistical population analysis techniques, such as principal component analysis (PCA), discriminant analysis of principal component (DAPC) and model-based method (STRUCTURE) were employed. The results of the population analysis clearly demonstrated a distinct separation of native and exotic horse breeds and clarified the relationships between studied breeds. The effective population size (Ne) for the last six generations was estimated 54, 49, 37, 35, 27 and 26 for the Caspian, Kurdish, Arabian, Turkmen, Akhal-Teke and Fell pony breeds, respectively. The Caspian breed showed the lowest LD with an average r2 value of 0.079, while the highest was observed in Fell pony (0.148). The highest and lowest average observed heterozygosity were found in the Kurdish breeds (0.346) and Fell pony (0.290) breeds, respectively. The lowest genomic inbreeding coefficient based on run of homozygosity (FROH) and excess of homozygosity (FHOM) was in the Caspian and Kurdish breeds, respectively, while based on genomic relationship matrix) FGRM) and correlation between uniting gametes) FUNI) the lowest genomic inbreeding coefficient was found in the Kurdish breed. The estimation of genomic inbreeding rates in the six breeds revealed that FROH yielded lower estimates compared to the other three methods. Additionally, the Iranian breeds displayed lower levels of inbreeding compared to the exotic breeds. Overall, the findings of this study provide valuable insights for the development of effective breeding management strategies aimed at preserving these horse breeds.


Subject(s)
Genomics , Inbreeding , Horses/genetics , Animals , Humans , Population Density , Iran , Discriminant Analysis
20.
Reprod Domest Anim ; 59(3): e14545, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426375

ABSTRACT

The conservation and sustainable utilization of cattle genetic resources necessitate a comprehensive understanding of their genetic diversity and population structure. This study provides an analysis of five native Turkish cattle breeds: Anatolian Black (ANB), Turkish Grey (TUR), Anatolian Southern Yellow (ASY), East Anatolian Red (EAR), and South Anatolian Red (SAN) using 50 K SNP data. These breeds were compared with three European breeds, Simmental (SIM), Holstein (HOL), and Jersey (JER), and three Asian Zebu breeds: Arabic Zebu (ZAR), Nelore (NEL), and Red Sindhi (RSI). Genetic diversity indices demonstrated moderate heterogeneity among the breeds, with TUR exhibiting the highest observed heterozygosity (Ho = 0.35). Wright's Fst values indicated significant genetic differentiation, particularly between Turkish breeds and both European (Fst = 0.035-0.071) and Asian breeds (Fst = 0.025-0.150). Principal component analysis distinguished the unique genetic profiles of each breed cluster. Admixture analysis revealed degrees of shared genetic ancestry, suggesting historical gene flow between Turkish, European, and Asian breeds. Analysis of molecular variance (AMOVA) attributed approximately 58% of the variation to population differences. Nei's genetic distances highlighted the closer genetic relatedness within Turkish breeds (distance ranges between 0.032 and 0.046) and suggested a more relative affinity of TUR with European breeds. The study's phylogenetic assessments elucidate the nuanced genetic relationships among these breeds, with runs of homozygosity (ROH) analysis indicating patterns of ancestral relatedness and moderate levels of inbreeding, particularly evident in Turkish breeds. Our findings provide valuable insights into the genetic landscape of Turkish cattle, offering a crucial foundation for informed conservation and breeding strategies aimed at preserving these breeds' genetic integrity and heritage.


Subject(s)
Genetics, Population , Inbreeding , Animals , Cattle/genetics , Phylogeny , Homozygote , Genetic Variation , Polymorphism, Single Nucleotide , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...